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Abstract—Judicious application of a complementary set of sophisticated
analytic techniques to large databases from human/machine anomalous in-
teraction experiments can extract subtle structural features that might elude
more simplistic analyses. The combination of a multi-factor analysis of vari-
ance (ANOVA) with various subsidiary, ad hoc approaches suggested by the
ANOVA or directly by the data, can establish an instructive hierarchy of
salient physical and subjective parameters and illuminate some of their spe-
cific details. In this particular study, the dominant finding is a significant cor-
relation of anomalous effects with prescribed intentions of the human opera-
tors, compounded of small contributions from many individuals across many
experimental conditions. The grand concatenation, which includes all com-
binations of successful and unsuccessful parameters or conditions, shows a
chance probability for this correlation with intention on the order of 107
The effect apparently is confined to non-deterministic devices; i.e., deter-
ministic pseudo-random sources show no overall effect. The correlation with
intention for non-deterministic sources alone has a chance probability of 10~
®. Beyond operator intention, most of the other technical, procedural, and
subjective parameters explored show unimpressive contributions to the over-
all variance, with a few notable exceptions that are clarified in the subsidiary
analyses. For example, individual differences among operators are indicated,
but there is a relatively normal distribution of effectsizes, within which a few
participants are distinguished by consistent achievement over large databas-
es. The temporal development of effect sizes shows a consistent pattern of
initial success that declines but then recovers. There is essentially no evi-
dence for a dependence of effect size on spatial or temporal separation, sup-
porting other indications that ordinary physical variables have little impact
on the anomalous interactions. In sum, although the composite ANOVA
models explain less than 1% of total variance, implying very small and subtle
effects, the analysis provides strong evidence that the anomalies are statisti-
cally robust; they are not due to chance fluctuations, but are demonstrably
correlated with definable subjective factors.

Keywords: anomalies — ANOVA — consciousness — electronic random
event generator — mind/machine interactions — models — REG — RNG

Introduction

Beginning about four decades ago, electronic random event generators or ran-
dom number generators (REG or RNG) have been used in a wide range of
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laboratory experiments designed to test the hypothesis that human conscious-
ness might interact directly with labile physical systems. The results provide
clear statistical evidence that the behavior of these devices deviates from
chance expectation in correlation with the pre-defined intentions of partici-
pants in the experiments (Radin and Nelson, 1989). In 1979, the Princeton En-
gineering Anomalies Research Laboratory (PEAR) began collecting large
databases in REG experiments using particularly rigorous controls and a vari-
ety of optional parameters to assess the character and replicability of such
anomalous mind/machine interactions. Over a 12-year period of primary in-
vestigation, ten physical and psychological conditions were examined as pos-
sible mediating variables in the experimental results. A number of extensions
and variations of the basic protocol were explored, using different REG
sources as well as a selection of other physical systems, the performance of
which was dependent on some form of random process. The experiments had
accompanying calibrations which confirmed that the random sources were of
high quality, producing data that consistently conformed to theoretical expec-
tations in non-experimental conditions. In the active experiments, however,
the data sequences and distributions were significantly correlated with the ex-
perimental variables, especially the operators’ intentions to shift the means of
the REG output distributions, and showed structure that could not be account-
ed for by chance fluctuations.

This paper presents a compact summary of a formal analysis of variance
(ANOVA), and a number of subsidiary ad hoc analyses of the results from
these REG studies, comprising 1338 replications of the experiment, including
a small set of variations on the basic protocol.

Equipment

The PEAR program has used three generations of random event generators,
utilizing different primary sources of white noise but maintaining important
common features of design. An original benchmark experiment employed a
commercial random source sold by Elgenco, Inc., the core of which is propri-
etary. Elgenco’s engineering staff describe this module as solid state junctions
with precision preamplifiers, implying processes that rely on quantum tunnel-
ing to produce an unpredictable, broad-spectrum white noise in the form of
low-amplitude voltage fluctuations (Nelson, Bradish, and Dobyns, 1989). A
much simpler and more compact portable REG was based on Johnson noise in
resistors, or so-called thermal noise, which also is a quantum-level phenome-
non that produces a well-behaved, broad-spectrum fluctuation (Nelson,
Bradish, and Dobyns, 1992). A later-generation device called the PEAR
Micro-REG used a field effect transistor (FET) for the primary noise source,
again relying on quantum tunneling to provide uncorrelated fundamental
events that compound to an unpredictable voltage fluctuation.

In all cases, the design begins with some white-noise frequency distribu-
tion. For example, the benchmark REG presents a flat spectrum + 1 db from
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50 Hz to 20 kHz. A low-end cutoff at 1000 Hz attenuates frequencies at and
below the data-sampling rate. This filtering, followed by appropriate amplifi-
cation and clipping, produces an approximately rectangular wave train with
unpredictable temporal spacing. Gated sampling, typically at a constant 1-
kHz rate, yields a regularly spaced sequence of random bits, suitable for rapid
counting. Other sources have been constructed that allow higher sampling
rates, up to 2 MHz (Ibison, 1998), but this paper summarizes data from the
standard unit only. Analog and digital processes are isolated by temporally al-
ternating these operations to exclude contamination of the analog noise train
by the digital pulses. To eliminate biases of the mean that might arise from
such environmental stresses as temperature change or component aging, an
exclusive or (XOR) mask is applied to the digital data stream. This is either a
regularly alternating 1/0 pattern or a more complex mask comprising a ran-
domly ordered array of all 8-bit bytes with equal occurrence of 1/0. The latter
procedure also excludes all short-lag bit-to-bit and byte-to-byte auto-correla-
tions. Finally, data for the experiments are presented and recorded in “trials”
that are the sum of N samples (typically 200 bits) from the primary sequence,
thus further mitigating any residual short-lag auto-correlations. The final out-
put of the benchmark REG thus is a sequence of conditioned bits, and in the
later devices, of bytes presented to the computer’s serial port, which then are
formed into a sequence of trials, usually generated at approximately 1 per sec-
ond. Calibrations on all of the devices closely conform to statistical expecta-
tions for the mean, variance, skew, and kurtosis of the accumulated count dis-
tributions, and expectations for time-series of independent events (Nelson,
Bradish and Dobyns, 1989; Nelson, 1993; Nelson et al., 1997).

Experimental Design

The basic experimental designs also embody protocol-level protection
against artifactual sources of apparent effect. Following a “tripolar” protocol,
participants generate data under three conditions of pre-specified intention,
namely to achieve high (HI) or low (LO) mean values, or to generate baseline
(BL) data. With the exception of the intention held in the participant’s mind,
which is pre-recorded in computer files, these three conditions are otherwise
the same; all potentially influential variables are maintained constant within
an experimental session or series.

In addition to the primary variable of tripolar intention, a number of sec-
ondary parameters are available as options that can be explored in separate
sessions, and assessed as factors that may contribute to the experimental out-
comes. These include:

1. Human variables such as the identity of the individual operators (partic-
ipants), their gender, and whether they are “prolific,” i.e., have per-
formed sufficient replications of the experiment to permit robust
comparisons. In this category we also include the replication number or
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serial position of the session as a factor that reflects operator experi-
ence.

2. Physical variables such as the different noise sources, including not
only the true random sources described earlier, but also various hard-
ware and algorithmic pseudo-random generators, designated as non-de-
terministic and deterministic sources, respectively.

3. Operational variables, including spatial separation of the operator from
the machine (up to thousands of miles) and separations in time (up to
several hours or in a few cases, one to four days); information density
(bits per second); the number of trials in automatically sequenced
“runs;” the instruction mode (volitional or instructed); and the type of
feedback provided to the operator.

Analysis of Variance

The benchmark REG database was accumulated over a period of 12 years,
with contributions from 108 individual operators, 30 of whom met our criteri-
on for prolific operators by generating a minimum of 10,000 trials per condi-
tion (the equivalent of 10 experimental series or replications). The primary
database of 1262 independent replications, comprising a total of 5.6 million
200-bit trials, was analyzed by a regression-based ANOVA, previously report-
ed (Nelson et al., 1991). Since this phase was completed, two smaller data sets
have been added, for a total of 1338 replications, and new versions of two fac-
tors (the random source variable is simplified; operator identification is now
enhanced with gender specification) included in the original analysis have
been defined to help understand the results of the original analysis and those
of other special-purpose, detailed analyses. Although they are defined a pos-
teriori, they provide legitimate assessments of the questions they represent,
within the context of the full complex of potential influences in this experi-
ment. The discussions that follow thus rely on the original analysis, supple-
mented by additional information derived from the expanded assessment
using the new factor definitions.

The REG database is complex, involving nine analytical factors with two to
five levels, and a tenth (operators) with more than 100. The analytical matrix
has unbalanced cells, requiring that the ANOVA be based on multiple regres-
sion modeling, employing a “model-comparison” procedure for partitioning
the regression sum of squares. In addition to the comprehensive model and a
similar analysis addressing only the contributions of prolific operators, a
number of smaller models have been used to examine the details of variance
contributions in particular subsets and in individual operator databases. De-
tails of these may be found in the earlier technical report (Nelson ez al., 1991).

The formal models indicate that anomalous effects appear as small statisti-
cal signals in a background of noise; in most cases the amount of variance ex-
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plained is on the order of one percent or less. Hence, it is only through the ac-
cumulation of large databases that these small effects can be examined.

Full Database Analysis

The tables, figures, and comments in this section summarize the major re-
sults of the original 1991 analysis of variance (Nelson etz al., 1991) based on
models for all (1262) replications, the prolific operator subset, and a selection
of restricted subsets relevant to particular questions. Each regression model is
evaluated in terms of its sum of squares (SSR), degrees of freedom (df), associ-
ated p-value (p), and proportion of total variance explained by the parameters
used in the model (R?). Following this, a partitioning of the regression sum of
squares reveals the contributions due to intention and to each of the secondary
parameters. The latter combine the main effect and the interaction with inten-
tion for each parameter, and include an “unaccounted” entry that indicates the
average over- or underestimation of factor contributions resulting from the
model-comparison approach to the breakdown of the regression sum of
squares. This is on the order of 1% or less of the total residual variance and is
not significant. Tables 1-6 all have the same format, showing the composite
sum of squares, degrees of freedom, F-ratio, and a p-value indicating the sig-
nificance of each factor’s contribution, where “p-value” refers to the chance of
an outcome more extreme than the observed one, assuming the null hypothe-
sis. In subsequent discussions, the terms “suggestive” or “marginal” refer to
p-values between 0.10 and 0.05, and “significant” to those less than 0.05. Fig-
ures 1—4 illustrate the overall effect of parameters, usually by displaying the
mean shift, or effect size, as a function of intention, with one-sigma error bars.
The unit for the effect size is the equivalent number of bits per 50 trials, and
corresponds to the number of excess bits per 10,000 binary events.

The model for the entire data set, with the decomposition of the total sum of
squares due to the experimental factors, is presented in Table 1. The corre-
sponding overall mean shifts are shown in Figure 1. All data and parameters

TABLE 1
All Data (All Parameters Except Operators)

Model: SSR = 199220; df = 50, 113703; p = 0.0050; R* = 0.00070

Parameter Sum of Squares df F-Ratio Probability
Intention 41875 2 8.349 2.4x107
Device 32537 6 2.163 0.043
Location 28618 6 1.902 0.076
Protocol 9954 6 0.662 0.68
Series 40934 12 1.360 0.18
Runlength 11748 6 0.780 0.58
Assignment 4318 3 0.574 0.63
Control 7730 3 1.028 0.38
Feedback 19475 6 1.294 0.26

Unaccounted 2032
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Fig. 1. Correlation of mean shift with intention. All data are from the comprehensive model in-

cluding all factors except operators. Units for the mean shift are the number of bits per 50
trials, which is equivalent to the number of bits per 10,000. Point estimates (circles) with
one-sigma error bars.

are included, with the exception of the operators factor, whose interactions
with intention comprise more than 300 degrees of freedom, entailing calcula-
tions that exceed the computational system limits. This factor is addressed
later in the prolific operators model.

The regression model for the full database across all operators and parame-
ters is significant, clearly indicating that the combined influence of the exper-
imental parameters adds information to the nominally random distribution.
The model explains less than 0.1% of the variance, however, which is consis-
tent with the very small ratio of anomalous effect to stochastic “noise.” We
will see in subsequent analyses that certain well-defined subsets have an R*an
order of magnitude larger, but none of the models explain much more than 1%
of variance.

As predicted, intention is the primary contributor to the regression, with a
mean squared deviation (and F-ratio) four times that of the next largest para-
meter, and, as the figure shows, the relationship between intention and mean-
shift is consistent with the experimental hypothesis. While HI and LO are
properly displaced relative to BL, the meanshift relative to theoretical expec-
tation is greater for HI than LO. This imbalance appears consistently in vari-
ous subsets but the differences are not statistically significant. The BL data
also show a tendency for high deviations that are fairly consistent, although
not significant, in curious contrast to the calibrations, which properly do not
exhibit any consistent trends (Nelson, 1993). “Device” (type of random
source) and “location” are significant and marginal secondary parameters, re-
spectively, suggesting a need for separate examination of the various levels of
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each. Briefly, such subsidiary analyses show that results with the diode source
and with a non-deterministic shift-register-based device are similar to each
other, but differ from those with the deterministic or algorithmic pseudo-ran-
dom devices. The shift-register device originally was classified as pseudo-
random, but subsequently was determined to be a combination of pseudo-ran-
dom and truly random components, hence qualifying as a non-deterministic
source (Jahn er al., 1997). With respect to “location” the subsidiary analysis
shows a second-order interaction: local and remote data are similar, while the
“B” location (operator in the next room, delayed feedback) differs, but the lat-
ter effect is driven by a confounding interaction with the device type. This will
be discussed further, but we should note in this context that the database for
the “B” location is comparatively small and hence any inferences must be ten-
tative. To examine the effect of large spatial separations on the anomalous ef-
fects more thoroughly, a special-purpose analysis using linear regression was
applied. The results show no trend in scoring associated with increasing sepa-
ration of operator from machine, up to several thousands of miles (Dunne and
Jahn, 1992).

In the full model, “assignment” (whether the instruction was random or vo-
litionally chosen) and “control” (automatic vs. manual sequencing of trials)
are not represented precisely because 16 early series mixed these parameters.
When these series are excluded, “assignment” is associated with a p-value of
0.52, and “control” with a p-value of 0.29, hence neither factor is a contributor
in the grand concatenation. The “protocol” (the experiment’s length and pur-
pose, particular questions, etc.), “series” (series position), “runlength,” and
“feedback” factors are all non-significant in the main analysis. For “series,’
however, other detailed assessments indicate a clear, albeit complex, non-lin-
ear structure (Dunne et al., 1994) which will be discussed later.

In qualification tests of the multiple regression modeling procedure, the
corresponding analysis applied to arbitrarily assigned calibration data in the
full database model yielded a non-significant regression, and parameter con-
tributions that were well within chance variation: one factor had a marginal p-
value (0.063), but none reached the nominal significance level (Nelson et al.,
1991). Thus, the appearance of structure in the experimental database cannot
be attributed to artifacts of the modeling procedure.

Prolific Operator Results

Table 2 and Figure 2 show the results for a subset of the full original data-
base consisting of 1060 series produced by the 30 “prolific” operators, each of
whom generated 10,000 or more trials per intention. In this model, which con-
stitutes approximately 80% of the full database, the operator factor can be as-
sessed, and because the various parameter levels are represented more evenly,
the results may be interpreted with higher confidence. This prolific operator
model is highly significant and explains more than twice as much of the vari-
ance (0.2%) as the full model, suggesting that the inclusion of both multiple
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TABLE 2
Prolific Operators (All Data and All Parameters)

Model: SSR =499986; df=137,97135; p=4.4x10""; R*=.0020

Parameter Sum of Squares df F-Ratio Probability
Intention 44215 2 8.790 1.5x10™
Operators 298546 87 1.364 0.014
Device 42382 6 2.809 0.010
Location 36848 6 2.442 0.023
Protocol 14755 6 0.978 0.44
Series 24260 12 0.804 0.65
Runlength 10263 6 0.680 0.67
Assignment 7194 3 0.954 0.41
Control 4122 3 0.546 0.65
Feedback 27343 6 1.812 0.092
Unaccounted -9942

Meanshift
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Fig.2. Correlation of mean shift with intention. Data are from the prolific operators model in-
cluding all factors. Mean shift units are the number of bits per 50 trials, which is equiva-
lent to the number of bits per 10,000. Point estimates (circles) with one-sigma error bars.

replications by individuals and a factor that represents individual differences
may serve to clarify the effects of the parameters.

Again, intention is highly significant and is the primary contributor to the
regression. The operator parameter also is significant, indicating individual
differences in performance and the need to consider each operator’s data sepa-
rately to assess individual responses to parameters. Such analyses have been
detailed in the earlier technical report (Nelson et al., 1991), and will be con-
sidered further in discussion of the updated ANOVA. Figure 3 shows the re-
sults of a cluster analysis of the intention-linked performance of the 30 prolif-
ic operators. There are three well-defined clusters: one for success in the
direction of intention (HI — LO), one for a small number of operators with
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Fig.3. Clustering of prolific operator effect sizes. The difference between HI and LO mean
shift (arbitrary units) is plotted against the proportion of the sum of squares attributable
to intention. Operator numbers are printed in a point size proportional to the operator’s
database size. The computed clusters are indicated by dotted lines around a group with
large effect sizes in the intended direction (upper group) and opposite to intention (lower
group). The remaining operators did not generate effects correlated with intention.

large effectsin the direction opposite to intention, and a third cluster for whom
intention was not a significant contributor to the regression model.

Both device and location appear as important secondary parameters, similar
to the grand concatenation shown in Table 1, but for location we must again
apply the previously mentioned caveats concerning the device interaction
stemming from the small “B” data set. Feedback shows a marginal contribu-
tion, and examination of the subset means suggests, surprisingly, that the sim-
ple digital feedback and non-feedback conditions produce somewhat higher
scores than the more engaging and informative graphic feedback mode while
detailed examination shows this to be driven largely by early trials, which had
larger effect sizes but which were done only with digital feedback. Subsequent
studies suggest that feedback may indeed be an important parameter.

Although the series position contribution to the multiple regression is non-
significant, the assessment of subset means reveals a complex pattern of re-
sults as a function of series or replication number. As shown in Figure 4, the
highly significant composite result in the first series declines to non-signifi-
cance, and then recovers to a significant effect in later series. The figure shows
that this non-linear progression of effect size is superimposed on a weakly de-
fined linear trend, thus explaining why the contribution of this parameter to
the simple regression model is modest.

This pattern has been the subject of a more specific and detailed regression
analysis (Dunne et al., 1994) that confirms and extends the indication of a
strong influence of series position (corresponding to developing operator
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Fig. 4. Sequential development of effect size as a function of series position. Units of effect size
are bits per 50 trials, and the differences between the HI and LO intentions for each series
are plotted as point estimates (circles), with one-sigma error bars. The point labeled 5+
includes series 5 and all subsequent series.

experience), despite the modest contribution from this factor in the primary
ANOVA model. The subsidiary analysisreveals that a similar pattern of strong
early performance followed by a decline and subsequent recovery obtains in
both the high and low intentions. The quadratic component of the regression is
significant (p = 0.016) for the high—low difference, while the linear compo-
nent is negligible. No such pattern is evident in the baseline data.

Most of the other secondary parameters in the ANOVA model are not over-
all contributors across operators, but a number of individuals respond differ-
ently to the experimental variations. Detailed analyses of the associated pat-
terns are beyond the scope of this paper, but may be found in the technical
report (Nelson et al., 1991). The unaccounted variance in the prolific operator
model is negative, indicating average overestimation of contributions, but this
is inconsequential in magnitude.

Again a corresponding analysis using arbitrarily assigned calibration data
yields a non-significant regression and no evidence of non-chance variation.
One parameter has a marginal p-value (0.086), but it is a factor different from
that with a marginal p-value in the full database model, giving further evi-
dence that calibration data show only normal chance fluctuations, and that the
modeling procedure does not produce artifactual indications of parameter ef-
fects.

ANOVA Update

The specialized analyses of the REG database using the ad hoc tools and
perspectives mentioned above revealed some influential variables not includ-
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ed in the original, 1991 analysis, and prompted the development of corre-
sponding parameters to be included in an update of the analysis of variance.
Of course this is an a posteriori procedure, in the sense that the questions
arose out of specific analyses of the data, but the new factors are reasonable
extensions or modifications of those in the original ANOVA.

In this updated analysis, a factor called “gender” is represented with three
levels: male (59 operators), female (50 operators), and co-operators (18
pairs). Although Dunne found instructive, significant differences in the aver-
age effects of men and women (Dunne, 1991), this factor is not a significant
contributor in either the new overall model (see Table 3) or the corresponding
prolific operators model. The finding is consistent with Dunne’s observation
that the compounded effects (composite Z-scores) do not differ significantly
for men and women, although their average effect sizes do differ (Dunne,
1998). This is explained by the disproportionate contributions in very large
databases by three female operators whose results differ significantly from the
other forty-seven.

The co-operator data were not included in the 1991 analysis, but they have
been assessed directly in a specialized, ad hoc analysis (Dunne, 1991). In par-
ticular, the effect sizes have been compared with those of single operators and
appear to be larger by a factor of two or more, depending on the composition
of the pairs. Despite the comparatively large mean shift for the co-operators,
this database is too small relative to those for the individual male and female
operators to produce a significant difference across the gender factor. We
made no attempt to confirm the striking “bonded-pair” results found by Dunne
because this would require a further dilution of cell populations in the co-op-
erator subset of the database.

The redefinition of the device parameter as a deterministic or non-determin-
istic “source,” and the inclusion of “gender,” have two other notable effects.
The previous indication that location was a significant or marginal

TABLE 3

Revised Model, New Parameter Definitions:
Source (Random vs. Deterministic), Gender (Female, Male, Co-Operators)

Model: SSR =204391; df = 56, 120987; p = 0.0147; R *=0.00067

Parameter Sum of Squares df F-Ratio Probability
Intention 43999 2 8.772 1.5x107*
Source 24655 3 3.277 0.020
Location 20148 9 0.893 0.53
Protocol 16297 6 1.083 0.37
Series 50770 12 1.687 0.063
Runlength 13152 6 0.874 0.51
Assignment 4787 3 0.636 0.59
Control 7967 3 1.059 0.37
Feedback 11293 6 0.751 0.61
Gender 3296 6 0.219 0.97

Unaccounted 8027
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parameter is mitigated here, as a result of clarifying the device distinction.
Secondly, due to clearer definition of the device influences, as well as possible
effects of gender differences, the series position parameter now is marginally
significant.

A separate, special-purpose definition of the gender factor using four levels
includes, in addition, a special category that segregates the contributions of
three high-performing female operators with moderate to large effect sizes
and extremely large databases, resulting in disproportionate contributions to
the overall effect. Their operator numbers (10, 78, 80) are notable in Figure 3,
where the font size is proportional to the database size. This four-level “gen-
der” factor is obviously defined a posteriori, and should be regarded as a
means to confirm findings of other, independent analyses, (Jahn et al., 1997),
within the context of the full analysis of variance. The full ANOVA model
using this four-level parameter shows it to be a highly significant contributor
(p = 3.4 x 107*), indicating that results for the small, selected group of opera-
tors clearly differ from the general pattern (see Table 4 and Figure 3).

Although this conclusion must be tempered by the a posteriori nature of the
analysis, it is clear that the combination of very large databases with moder-
ate, positive effects contributes powerfully to the experimental outcome. Un-
derstanding the contributions of this source of variance may help to interpret
other aspects of the experiment; it underscores the importance of large indi-
vidual databases, where interactions with other variables are not confounded
by significant individual differences.

The updated regression models also include a newly defined device factor,
called “source,” with two levels: non-deterministic and deterministic. The for-
mer comprises the Elgenco-based REG and the first version of a hardware
“pseudo-random” source, which was, in fact, non-deterministic because it em-
ployed randomly varying shift-register steps. A revised hardware pseudo-ran-
dom source subsequently was developed, as well as an algorithmic pseudo-

TABLE 4
Revised Model, All Data: Contribution of High Performers

Model: SSR =278012; df=159, 120984; p = 0.000051; R*=0.00092

Parameter Sum of Squares df F-Ratio Probability
Intention 43999 2 8.774 1.5x10™*
Source 25386 3 3.375 0.017
Location 23026 9 1.020 0.42
Protocol 14683 6 0.976 0.44
Series 47974 12 1.594 0.085
Runlength 11007 6 0.732 0.62
Assignment 7160 3 0.952 0.41
Control 11313 3 1.504 0.21
Feedback 14900 6 0.990 0.43
Gender+hi—perf 76917 9 3.409 3.4x107

Unaccounted 8026
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random source. The latter two are properly deterministic, and data generated
using them are compared with those from the truly random, non-deterministic
devices by means of the new source factor. The updated models show this pa-
rameter to be significant, with a p-value of 0.020 in the grand, overall regres-
sion, and p = 0.0071 in the prolific operator model.

When the non-deterministic sources, also shown in other analyses to yield
no anomalous effect (Jahn er al., 1997), are excluded (see Table 5), the ex-
planatory power of the model increases greatly to nearly 1% of the variance,
and the significance of the intention factor increases to 107, No other factor
except that representing series position is a prominent contributor to this
model; without the relatively noisy deterministic source data, the series para-
meter becomes significant. It is also worth noting that in this model location
shows no suggestion of differentiation, confirming other evidence that anom-
alous effects are not a function of spatial separation.

Table 6 presents a model restricted to the deterministic sources alone,
where we find no indication that the intention factor contributes to an

TABLE 5
Revised Model, Non-Deterministic Sources Only

Model: SSR = 197238; df = 53, 90210; p=0.012; R*=0.00087

Parameter Sum of Squares df F-Ratio Probability
Intention 69428 2 13.861 1.0x10°°
Location 6492 9 0.288 0.98
Protocol 23379 6 1.556 0.16
Series 55234 12 1.838 0.037
Runlength 23402 6 1.557 0.16
Assignment 9045 3 1.204 0.31
Control 5509 3 0.733 0.53
Feedback 8253 6 0.549 0.77
Gender 3454 6 0.230 0.97
Unaccounted 957

TABLE 6

Revised Model, Deterministic Sources Only

Model: SSR = 128858; df =47, 30732; p =0.313; R*=0.0017

Parameter Sum of Squares df F-Ratio Probability
Intention 1914 2 0.380 0.68
Location 64171 9 2.832 0.0025
Series 14753 12 0.488 0.923
Runlength 8999 6 0.596 0.73
Assignment 3723 3 0.493 0.687
Control 18599 3 2.463 0.061
Feedback 15140 6 1.002 0.42
Gender 14027 6 0.929 0.47

Unaccounted 2467
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explanation of variance. Only the location factor is significant in this case,
while the regression model itself is non-significant. Thus, the indications of
differentiation by location can be attributed to the large, though inconsistent
effects in the small “B” and “C” subsets of the deterministic data.

Combining these two specialized questions in a single analysis, we generate
a model that includes the exploratory parameter segregating the three high-
performing operators, and excludes data from deterministic sources (which
show no effect). The variance explained in this model increases to well over
1% (see Table 7). Intention is the primary contributor, followed by the four-
level gender factor, the explanatory power of which is about one-third that of
intention. Of the remaining parameters, only series position appears as a mar-
ginally significant contributor.

Conclusions

The most important finding in both the original and the updated analyses is
a significant correlation of outcome with the pre-assigned intentions, com-
pounded largely of small contributions from many individual operators across
most of the experimental conditions, but with a disproportionate contribution
from the three high-performing operators. Depending upon the particular sub-
set of the large and complex database, the statistical significance ranges up to
a few parts per million, with the grand concatenation, which includes all com-
binations of successful and unsuccessful parameters or conditions, showing a
probability for the correlation with intention on the order of 2 x 107,

These comprehensive ANOVA models provide compact summaries of the
major findings of the REG experiments, with the combined effect of all mea-
sured parameters taken into account. In conjunction with the complementary
analyses addressing specific questions, this approach leads to a number of
well-defined conclusions:

TABLE 7
Revised Model:
Segregation of Non-Deterministic Sources and Contribution of High Performers

Model: SSR =291671; df = 56, 90207; p=4.0x10""; R*=0.0013

Parameter Sum of Squares df F-Ratio Probability
Intention 69428 2 13.866 1.0x107¢
Location 7494 9 0.333 0.96
Protocol 23698 6 1.578 0.15
Series 47481 12 1.581 0.089
Runlength 21943 6 1.461 0.19
Assignment 11376 3 1.515 0.21
Control 9455 3 1.259 0.29
Feedback 9965 6 0.663 0.68
Gend+hi—perf 97887 9 4.344 1.1x107°

Unaccounted =7057
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. Overall, the correlation with intention is a small-magnitude effect,
equivalent to a distribution mean shift of about 1 part in 10,000, ranging
up to an order of magnitude larger in certain subsets. This finding differs
little between the original and updated analyses (p = 0.00015, p =
0.00024, respectively). This result also is similar to that in Jahn ez al.
(1997) for the benchmark REG (p = 0.00007), although a direct compar-
ison is not appropriate since the ANOVA result considers the structuring
effect of all three intentions, while the standard analysis regards only
the differential between the HI and LO conditions.

. The broad generality of the finding across most of the different combi-
nations of parameters suggests a mechanism that operates at a very fun-
damental level. For example, a separate, specialized analysis indicates
that the anomalous effect can be modeled most simply as an alteration of
the fundamental binary probability of the random events (Jahn, Dobyns,
and Dunne, 1991).

. The effect is apparently confined to non-deterministic devices. The up-
dated version of the ANOVA confirms that deterministic pseudo-ran-
dom sources do not change behavior in correlation with the operators’
intentions, while non-deterministic random sources incontrovertibly do
so. The full regression model indicates a significant contribution of the
“source” parameter, and a model limited to data taken with non-deter-
ministic sources is highly significant (4.0 x 107°) with the intention pa-
rameter also significant (1.0 x 107°), while the corresponding model for
data from deterministic sources alone is not significant, nor is the inten-
tion parameter. (We note, however, that location is significant and con-
trol is marginal in the latter model [p = 0.002 and 0.061, respectively],
and since other researchers have reported effects with pseudo-random
sources (Radin and Nelson, 1989), a strong conclusion discounting de-
terministic sources would be premature.)

. Although there are individual differences, there is a relatively normal
distribution of effect sizes across individuals, with no indications of out-
liers indicating special performance in the sense that only certain “gift-
ed” individuals can produce the anomalous effect. Nonetheless, consis-
tent positive achievement over large databases does distinguish a few
individuals. While the clear differentiation for the selected group of
three operators is predetermined by the selection process, their distinc-
tive performance is instructive. Inspection of their effect sizes shows
them to fall within the range of the full distribution of operators, indicat-
ing that the differential is driven mainly by the large database sizes.

. The gender variable, necessarily represented in the ANOVA by compos-
ite rather than average operator scores, does not show a significant con-
tribution to the variance. Specialized analyses addressing the average
effect size reveal that there are gender differences, however, comprising
small variability and regular correlation with intention for men, and
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larger variability and less consistent correlations for women (Dunne,
1998).

6. The temporal development of effect sizes shows a consistent pattern,
with initial significant success that declines but then recovers. A
specialized analysis reveals that this is a broadly distributed pattern in
the intentional conditions, which does not appear in baseline data
(Dunne et al., 1994).

7. The overall findings show essentially no evidence for a dependence on
spatial or temporal separation, complementing other indications that or-
dinary physical variables have little impact on these anomalous interac-
tions. A specialized analysis has supplemented this conclusion within
REG and other databases (Dunne and Jahn, 1992).

In summary, we conclude that both the comprehensive ANOVA technique
and the more sharply focused ad hoc analyses can play important roles in the
assessment of complicated databases of this sort. On the one hand, analysis of
variance allows an examination of large and complex data sets as a whole,
with a perspective that displays the relative strength of effects from all the
measured variables in the experiment. But ANOVA has limitations, especially
in a database where the cell populations in the analytical matrix vary as much
as do those in the REG ANOVA. The practical requirements of the experimen-
tal program have dictated an ad lib accumulation of data under various combi-
nations of parameters in order to explore the engineering questions motivating
the experiment, while also maintaining a viable psychological context for the
human operators. In the course of the experimental development, emphases
have changed to include a progressively more incisive examination of subjec-
tive factors. Thus, the REG experiment, although based on an unchanging fun-
damental design, has a complex and unbalanced, non-orthogonal set of vari-
ables. This prevents easy assessment of higher-order interactions, even when
itis apparent that interactions among the various conditions may be important
contributors to the explanation of variance.

It thus follows that specialized, detailed analyses can help reveal the struc-
ture of the data in delimited subsets of the database, without compromising
the integrity of interpretations. For example, the implications of spatial sepa-
ration are critical to modeling the anomalous effects, and an analysis that ex-
amines both the linear and higher-order regression of effect size on distance
provides essential information. Likewise, the serial position effects must be
important indicators of psychological factors bearing on the results, and these
can be detailed only in ad hoc formats. In this context, ANOVA not only pro-
vides guidance for focused assessments, showing, for example, that a special-
ized analysis must address the non-deterministic and deterministic sources
separately, but it also confirms the legitimacy of the ad hoc studies. Thus, in
these and other cases previously discussed, we see a complementary balance
between the global perspective provided by ANOVA and the sharply focused,
incisive answers provided by well-posed supplementary analyses.
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