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Abstract-Comparing the yields in different anomalies experiments is 
important for both theoretical and practical purposes, but it is problematic 
because the effects may be measured on differing scales. The units in which 
experiments are posed vary across digital and analog measures recorded in 
a wide range of uniquely defined trials, runs, and series. Even apparently 
fundamental units such as bit rates may lead to disparate calculated effect sizes 
and potentially misleading inter-experiment comparisons. This paper seeks to 
identify a study unit that can render the results from various types of anomalies 
experiments on a common scale. Across several databases generated in the 
consistent environment of the Princeton Engineering Anomalies Research 
(PEAR) laboratory, yield per unit of time is the most promising of several 
measures considered. The number of hours during which participants attempt 
to produce anomalous effects can be consistently defined, and the time- 
normalized yield Y(h) = Z ldhours is demonstrably similar across a number of 
humanlmachine experiments, with a magnitude of about 0.2. On both practical 
and heuristic grounds, this constitutes a prima facie case for regarding the time- 
normalized yield as a natural metric for anomalous effects of consciousness. 

Application to a broad range of experiments, including examples from other 
laboratories, confirms the viability and utility of a time-based yield calculation. 
A X2 test across 12 local and remote databases from PEAR'S humanlmachine 
experiments indicates strong homogeneity. Inclusion of the remote perception 
database, which has a significantly larger yield at Y(h) = 0.6, immediately 
renders the distribution of effect sizes heterogeneous. These and other appli- 
cations return reasonable and instructive results that recommend the simple, 
time-normalized yield as a natural unit for cross-experiment comparisons per- 
mitting an integrated view of anomalies research results. 

Keywords: effect size-random event generator-random number-REG- 
RNG-normalization-inter-experiment comparison-meta-analysis- 
statistics-experimental yields-bits-trials-time normalization 

Introduction 

Because of the very small size of effects, and the consequently weak signal- 
to-noise ratio typical in anomalies research, especially humanlmachine inter- 
action experiments, there is considerable impetus to search for experiments that 
are more sensitive. This search also produces a growing body of data on an array 
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of potentially relevant parameters that may help define and understand the 
anomalous effects. However, a concomitant result of this otherwise desirable 
research development is a proliferation of differing data units or measures, with 
the result that it is difficult and apparently inappropriate to combine or compare 
results across experiments. Thus, ironically, what should in principle be a richer 
and more comprehensive picture becomes fragmented in such a way that 
important features of commonality and difference are obscured. 

Over the past few decades, a problem similar to this in various fields has 
been addressed by developing procedures for meta-analysis, or quantitative 
review, within the literature of a particular discipline or experimental paradigm 
(Glass, 1977; Rosenthal, 1991). Meta-analysis treats each of a body of 
experiments or experimental subsets (categories) as a data-point, and thereby 
creates a "higher level" database that permits rigorous and quantitative 
assessment of the full concatenation of available information. The key to this 
approach is that the experiments must be posed in well-defined, common units 
so that effect sizes expressed in these units can be combined and compared. 
Such meta-analyses in anomalies research have demonstrated the importance 
of aggregation within carefully circumscribed protocols (Utts, 199 1). But 
specifying the unifying measure is not a trivial task. Important questions and 
generalizations become accessible only if it is possible to find a common, or 
"natural", unit in which to express effects generated in differing experiments 
that have the common purpose of assessing anomalous interactions of human 
consciousness or intentions. The present exploration considers several 
potentially viable units to determine which of them may be most appro- 
priate as the basis for a natural and broadly applicable measure of the 
anomalous yield. 

The term "effect size" is used informally for a variety of different quantities, 
often with a unique, local definition. A frequent usage refers to a shift in the 
experimental distribution mean relative to a standard. This measure allows 
comparison of effects across subsets within a particular research protocol, but it 
does not embody information about reliability of the estimates, nor is it possible 
to compare distribution means from experiments with different measures. 

Conversion of the meanshift to a Z-score normalizes it in terms of its own 
standard error of estimate, and hence expresses effects in a nominally 
comparable unit, but the magnitude of the Z-score is dependent on the size of 
the database from which the mean is estimated, making it useful only for 
significance comparisons addressing the certainty with which experimental 
effects can be distinguished from each other or from chance fluctuations. 

In order to establish relationships and summarize findings across different 
experiments, and to incisively assess factors that influence variations, several 
other effect size measures have been developed, together with combination 
and comparison procedures. Special purpose measures of anomalous effects 
have been suggested by Schmidt (1970), Timm (1973), Tart (1983), and 
others, but these all apply only when experiments share a common 
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experimental and statistical paradigm. More recently, for purposes of meta- 
analysis, the issue has been given serious consideration by statisticians. 
Generally, an effect size is constructed by relating the meanshift or its test of 
significance to the size of the study, and numerous specific examples have 
been proposed (Cohen, 1988; Glass, 1977). One that is widely used is Cohen's 
d, which is the ratio of the difference in means to the pooled estimate for the 
population standard deviation, d = (MI-M2)Io, but there are inconsistencies in 
its application for correlated and uncorrelated observations, and practical 
interpretation is not straightforward. Rosenthal (1991) argues that the most 
generally applicable, readily interpretable, and consistently defined of several 
roughly equivalent effect size measures is the Pearson product moment 
correlation coefficient, which can be computed from a variety of different 
original statistics. It is related to Z by the function r = U ~ N ,  where N is the 
number of study units on which the Z-score is based. This measure expresses 
the difference between experimental conditions in units of the standard 
deviation of the raw data (usually called trials) from the experiment. It has 
come to be regarded as a canonical measure, but as we will see, it is not an 
appropriate standard for inter-experiment comparisons because the practical 
meaning of a trial varies greatly across experiments. 

The purpose here is to examine structural analogs of r calculated using other 
study units in addition to the original trials or data points, renormalizing the 
Z-score to express experimental results in terms of some common metric 
that yields a consistent measure of anomalous interactions across differing 
experimental protocols. The criterion for success in this search for what might be 
terrned a "natural scale" is based on the assumption that conscious intention to 
change the distribution of experimental data should have a similar yield when 
tested in different ways, albeit with variations attributable to real differences in 
operator performance, experimental conditions, and other variables. It should be 
clear that this fundamental idea of expected similarity or homogeneity across 
experiments, although reasonable, can only be tested inductively by accumu- 
lating indications that it supports consistent and sensible interpretations. We will 
therefore look for a transformation that produces the smoothest or most similar 
array of yields across a comparable set of experimental databases, intending to 
test it further by applying it to make comparisons among a broader assortment 
of experiments. 

Several bodies of data from humanlmachine interaction experiments and 
remote perception (PRP) experiments conducted over 15 years in the Princeton 
Engineering Anomalies Research (PEAR) program provide a rich source for 
comparisons, since all the experiments have been conducted in a consistent 
environment with the same philosophical framework, personnel, and style (Jahn 
et al., 1987). PEAR has large databases from each of these experiments, in 
which most factors are kept constant, where there is no file drawer of unreported 
experiments, and wherein there are statistically significant effects and 
demonstrable internal structure. 
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Procedure 

Five study units were chosen for this assessment: bits, information, trials, 
series, and time. To simplify comparison of the different transformations, 
performance in each of the humanlmachine experiments was represented by the 
"bottom-line" difference between results in the two intentional conditions (e.g., 
HI - LO), expressed as a 2-score. For each of the five different study units, the 
yield, Y(x) = ~ l d ~ ( x ) ,  where N is the number of units of type x, was calculated 
for a representative body of data from each of several experiments. In most 
cases, a standard subset composed of equal amounts of data from the most 
prolific operators was used, since the full databases have large imbalances in the 
sizes of individual operator contributions. 

Calculations were made for (1) the actual number of binary decisions (i.e., the 
raw bit count); (2) the Shannon-Weaver information content, called the effective 
bit count; (3) the number of trials, or basic data records; (4) the pre-defined 
complete series or experiment; and ( 5 )  a time-based unit, the number of hours 
invested in the experimental effort. Some of these measures need more 
explanation. Trials are typically the basic data record and the smallest feedback 
unit for a given experiment. The trial-based yield corresponds to the unit used 
for calculating the product moment r = Z I ~ N ,  which is the canonical effect size 
expressing deviation in units of the trial standard deviation. The series or 
experiment amounts to a teleological measure, since operators know that it 
comprises the basic goal-directed task. That is, although the series definitions 
are arbitrary and may change, series are invariably followed by the terminal 
feedback that tells the operator and experimenter what happened as a result of 
the operator's effort. For the time-based unit, a measure of the operator's 
subjective time would be ideal, but is not feasible, so an objective and readily 
calculated approximation was specified: In all the humadmachine interaction 
experiments, the time period during which the machine is running and the target 
system is therefore labile or potentially vulnerable is well defined. The total time 
during the two intentional conditions when the target system was active and 
labile in this sense was used. For PRP experiments, 15 minutes per trial, as 
suggested by the standard protocol, was used for the time-based calculation. 

The Experiments 

A brief description of the essential features distinguishing the five experi- 
ments used for our assessment will indicate how they differ with regard to the 
physical systems and the particular measures involved. For each experiment, 
a "standard subset" was specified to minimize the impact of variations in 
individual operator contributions; in most cases, this was accomplished by using 
equal contributions from the relatively prolific operators. 

The random event generator (REG) experiments at PEAR are the longest 
running and most deeply studied paradigm. There are several variations, but 
a basic description applies generally and will give an idea of the conduct of all 
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our experiments. The design is called "tripolar" to reflect three conditions of 
intention: high, low, and baseline. This means that an operator (PEAR'S name 
for the "subject" or participant) tries to get the REG to produce results either 
higher or lower than expectation according to an instruction for the current trial 
or run, or to let the REG produce uninfluenced baseline trials. The experiment 
takes place in a comfortable setting, with the operator sitting in a chair roughly 
a meter distant from the REG itself for the basic local trials. There is usually 
feedback presented in a dedicated numerical display or by computer graphics, 
although there are a number of options including no feedback. After an 
introduction and general instruction, the experimenter withdraws to allow the 
operator to focus on the REG and develop his or her own strategy for interaction 
with the machine. The operators are not told how to achieve the intended results, 
but are allowed to develop their own strategies. Most report that they wish for or 
envision the desired outcome, and that they try to become attuned to the device, 
to be resonant or friendly with it. All data recordings, and issues of security and 
integrity, are managed automatically by the hardware and software. 

All the REG experiments have a recorded data unit of "trials", approximately 
1-second long, that are the sums of 200 bits, taken in series with lengths ranging 
from 1000 to 5000 trials per intention (Nelson et al., 1984, 1991, 2000). For the 
REG experiment, the standard subset employed for the basic calculations and 
comparisons was the first 10,000 trials produced by 30 operators who generated 
at least that many, drawn from the subset of all local, diode-based trials. The 
bit in the REG experiments is the well-defined, classical binary decision, 
which leads to a clear theoretical model and straightforward calculations. The 
Shannon-Weaver "effective information" content of an REG trial corresponds 
to the base 2 log of 200, or 7.64 bits, and represents the number of binary 
decisions required to precisely specify a trial outcome. (The sum of 200 bits 
is normally distributed, so that a more conservative measure could be used, but 
for this argument the simpler procedure will suffice.) On its face, this is a very 
attractive unit, but as will be shown later, it produces an unreasonably broad 
range of effect size or yield estimates, suggesting that the Shannon-Weaver 
formalism does not represent the fundamental currency in which anomalous 
information transfer should be measured. The amount of time invested by 
operators was defined as a function of the number of trials, or, equivalently, the 
period of time during which the experiment provides online feedback. 

The Random Mechanical Cascade (RMC) experiment is a large machine, 6 feet 
wide and 10 feet high, built into the wall opposite a couch. In a single 12-minute 
run, 9000 %-inch balls fall from a central opening at the top through an array of 
330 pins into 19 collecting bins. Operators sit on the couch and try to shift the 
mean of the resulting quasi-Gaussian distribution to the right or left compared to 
a baseline run. Software records the bin into which a ball drops after bouncing 
through the pin array, and calculation indicates that there are about 40 binary 
equivalent decisions or raw bits per ball, where the bit is defined as the "decision" 
between adjacent bins (Dunne et al., 1988). The effective bit count per ball is 
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the base 2 log of 40, or 5.32 bits of information. Again, this is a simplified 
approximation that is sufficient for present purposes; a rigorous account would 
include details of the distribution. Data are taken in a tripolar protocol, in series of 
10 or 20 runs per intention, and Z-scores are calculated from the difference 
between distribution means in pairs of runs. For the RMC experiment the standard 
subset used was the first 10 datasets for 25 operators meeting this minimum. 

In the Linear Pendulum (PEND) experiment (Nelson et al., 1994), operators sit 
in a comfortable chair in front of an aesthetically designed pendulum consisting 
of a 30-inch long fused silica shaft and a quartz crystal bob 2 inches in diameter. 
It is enclosed in a clear acrylic case, and feedback is provided by changing the 
color of light to represent degree of success in keeping the pendulum swinging or 
damping it, relative to baseline. The measured unit is the swing-to-swing change 
in velocity, derived from interrupts timed by a 50-nanosecond clock, and 
recorded as differences in the damping rate over the 200 swings in a 3-minute 
run. This is fundamentally an analog measurement, making it difficult to define 
a bit-counting measure of the effect, and an arbitrary surrogate was calculated by 
assigning one bit per swing, as if the difference between conditions at each swing 
were either positive or negative, discounting magnitude. Series consisted of five 
or nine sets of runs, and the standard subset used for PEND was the first 25 sets 
generated by 18 operators with this number or more. 

The measurable in the microelectronic shift-register (CHIP) experiment is the 
error rate in 1-second trials of 1000 bits (Nelson et al., 1992), which operators try to 
increase or decrease. The information content of a trial is 9.97 effective bits. Data 
were taken in runs of 50 trials and series of 25 runs. For the CHIP experiment, all 
data from the reliable "trials" protocol (in which the intention assignment was 
randomly changed for every trial) were used as the standard subset. 

In the PRP experiments, one person, the percipient, tries to envision the scene 
visited by a second person, the agent. There is typically a verbal description and 
sketches, but the basic data for computer analysis are recorded in the form of 30 
binary descriptors per trial, chosen by each of the two participants (Dunne et al., 
1983, 1989). Both agent and percipient address the task in a free-response mode, 
during which they are certainly processing a large amount of information that 
only later is coded into the arbitrary descriptor format from which a score is 
computed. If the 30 bits were all informative and independent, the description 
would specify one from more than a billion alternatives. Partial inter-descriptor 
redundancy reduces the effective bit count by about 25%, yielding an esti- 
mated information content of 22.5 bits per trial. The standard subset for the 
PRP experiment used all formal data in the randomly instructed, ab initio 
encoded subset. 

Results 

The five different yield normalizations were applied to each of these 
experiments, using the standard data subsets described above. Table 1 shows 
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TABLE 1 
Comparison of Yield Calculations 

Measure REG RMC PEND CHIP PRP 

Z-score 2.780 1.763 .994 .554 3.122 
Raw bits, N 

Yield, Y(r) 
Effective bits, N 

Yield, Y(e) 

Trials, N 
Yield, Y(t) 

Series, N 
Yield, Y(s) 

Hours, N 
Yield, Y(h) 

these calculations, giving a 2-score for the experiment and for each of the five 
measures; the number of study units, N; and the renormalized effect size, Y(x). 

To help visualize the degree of variation across experiments, Table 2 
compares the five different calculations as ratios of the yield in the other 
experiments to that of the REG as a standard. The results are visualized 
graphically in Figures 1 and 2. 

In Figure 1, the linear scale allows a direct visual comparison of the relative 
consistency of the various measures. The yields calculated for both raw and 
effective bits range over two orders of magnitude across the five experiments, 
indicating that this apparently simple and fundamental measure cannot, in either 
form, serve as a general basis for inter-experiment comparisons, given the 
assumption that a natural scale should indicate homogeneity among scores 
purporting to measure the same phenomenon. Similarly, the trial, which is the 
basis for the nominal effect size, r, does not appear to provide a natural scale for 
anomalous effects. The figure makes it clear that variations in the definition of 
experimental units result in different patterns across the five yield calculations. 

In Figure 2, a log scale is used for the same data, allowing a more detailed 
visual comparison of the relative consistency of the various measures. Here it 
is quite clear that there are orders of magnitude differences in the canonical, 

TABLE 2 
Yield Ratios for Five Measures 

Measure REG RMC PEND CHIP PRP 

Raw bits 1 .28 4.89 1.54 125.53 
Effective bits 1 .24 5 .OO 1.53 52.3 1 
Trials 1 30.38 9.17 5.56 89.40 
Series 1 1.48 .44 .58 3.79 
Hours 1 1.06 .63 .72 2.74 



184 R. D. Nelson 

Effect Size Ratios, Linear Scale 

- + - R=Raw Bits 

- a- E=Effective 

REG RMC PEND CHIP PRP 

1 Database (Standard Subset) I 
Fig. I .  The ratio of the effect size for each of the five experiments is calculated relative to the 

REG effect size and plotted on a linear scale. 

trial-based yield across experiments. This is the "effect size" that is most often 
published for anomalies experiments, and it is frequently invoked to compare 
experimental protocols (e.g., Targ, 2000). These results strongly suggest a need 
for careful reconsideration of such comparisons, and a search for an appropriate 
comparison standard; otherwise we may draw flawed conclusions about differ- 
ences in effect size. 

As noted, the bit and trial computations produce highly disparate results, but 
both the time-based and series-based calculations exhibit relatively similar yields 
across all experiments. This is a preliminary indication that the criteria for 
a useful standard might be met. The time-based measure presents the smoothest 
set of ratios. Now we must look more deeply to see whether its small advantage 
over the series unit is a substantial indication that results scale most naturally as 
a function of the time invested in their generation, or whether the teleological, 
goal-oriented measure represented by the completed experimental series is the 
fundamental unit in which anomalies might best be measured. This question 
can be quantitatively assessed by comparing data subsets where the pre-defined 
series length is changed within a particular experimental protocol, so that a given 
number of hours spent generating data is broken into differing numbers of series. 

In the local, diode REG experiment at PEAR, series of 5000, 3000, 2500, and 
1000 trials have been employed, and in the local RMC experiment, series of 
20, 10, and 3 runs have been used. Table 3 and Figure 3 show the yield 
computations based on series, Y(s), and time, Y(h), with their standard errors 
(SE) for these seven datasets. 
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Effect Size Ratios, Log Scale 
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Fig. 2. The ratio of the effect size for each of the five experiments is calculated relative to the 
REG effect size and plotted on a logarithmic scale. 

There is a significant positive correlation of the series-based yield, Y(s), with 
the length of the series (r = 0.845, p < 0.02), whereas the corresponding 
correlation for the time-based yields, Y(h), though positive, is not significant. A 
more direct test for our purposes, however, assesses the goodness-of-fit between 
the array of yield computations and our criterion of similarity, which can be 
modeled as a homogeneous distribution. Tests for homogeneity of the residuals 
from the mean across the seven yields shows that neither time nor series 
transformations can completely reconcile differences (X2 on 6 degrees of 
freedom = 17.4 and 27.3, respectively). However, two of the seven subsets have 
near-zero effects (Z = 0.243 and Z = 4 .662 ,  for the REG3000 and RMC3 
experiments, respectively). Given the null effects, these cases are not useful in 
discriminating the series- and time-based calculations. A common procedure 

TABLE 3 
Yield Transformed by Series and Time 

Database Z-score Series, N Hours, N Y(s) SE(s) Y(h) SE(h) 

REG5000 3.472 17 40 342 .243 .549 .I58 
REG3000 0.243 59 83 .032 .132 .027 .I11 
REG2500 1.359 86 102 .I47 .lo7 .I35 .099 
REG1000 2.903 360 169 .I53 .053 .223 .078 
RMC20 3.335 26 208 .654 .I96 .231 .069 
RMC 10 2.594 6 1 244 .332 .I28 .I66 .064 
RMC3 -0.662 70 84 -.079 .I20 -.072 ,109 
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Time and Series Transformations I "1 

- -t - S = Series 

H = Hours 

1 -0.4 ' Database 

Fig. 3. Yield computations for REG and RMC experiments with differing series lengths within 
otherwise consistent experimental protocols. 

used in meta-analysis to mitigate the effect of outliers on estimations of effect 
size is to progressively exclude extreme values until a homogeneous distribution 
is achieved (Rosenfeld, 1975). This exercise identifies the REG3000 and RMC3 
subsets as outliers, and if they are excluded, the picture sharpens: across the five 
remaining experiments, X2 for the time-based yields is 5.77 on 4 degrees of 
freedom, with p = 0.23, while the series-based yields remain heterogeneous with 
X2 = 14.27 and corresponding p = 0.0035. The time-based yields are statistically 
indistinguishable for four of the five remaining subsets, two from each 
experiment, while those based on the series measure show a component of 
variation proportional to the number of trials or length of the series, in addition 
to real differences that may exist among the subsets (e.g., the REG 5000 
database has a relatively large effect size or yield by any standard). 

Returning to the time-normalized yield in the standard subsets, we find that 
none of the differences among the Y(h) for the REG, RMC, PEND, and CHIP 
experiments approaches significance, and even that between PRP and 
a composite estimate for the others is only marginally significant. However, 
this latter difference appears to be real, as indicated by comparisons of the 
complete databases where error estimates are smaller. In these comparisons, 
the four humanlmachine experiments remain statistically indistinguishable from 
each other, while the PRP yield is significantly larger than REG (Z = 3.59), 
RMC (Z = 3.5 l), and PEND (2 = 3.90). 

The calculation of time-normalized yield, Y(h), can be made with objectivity 
and repeatability, and it can be made with equal convenience not only for 
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the various PEAR experiments but for other laboratories as well, provided an 
adequate description of the experimental protocol is reported. It is encouraging 
that there is a demonstrable consistency across several quite different human/ 
machine experiments. Only the PRP yield differs from the others, and it is a 
paradigm that differs in ways that should be instructive. Among other things, it 
is an information transfer experiment rather than a mindlmatter interaction. It 
also involves two people, but even when the calculation is based on the time 
invested by both participants, the time-normalized yield remains twice as large 
and significantly different from that in the humanlmachine experiments. 

Using the fact that the yield per unit time is similar across a variety of related 
experiments to argue that the measure represents a natural scale for anomalous 
effects of consciousness is something of a bootstrapping operation, because the 
argument presumes an answer to one of the important questions for which 
an effect size or yield reconciliation is desired. Nevertheless, the balance of in- 
dications from these analyses, together with practical considerations, suggests 
that time normalization has broad generality. Analogy with the search for lawful 
relationships in the physical sciences suggests that an appropriate criterion for 
a useful metric is a simple functional relationship across a variety of appli- 
cations, and time normalization does meet that criterion. 

Applications 

The time-based yield computation can be applied to a broader sample of 
experimental data, both to confirm its viability and to reveal some of the detailed 
information inherent in comparisons of experimental subsets within and across 
several research domains. The REG database is a primary resource, since it has 
a number of variants all using exactly the same basic design, but exploring 
parameters that give differing perspectives. Table 4 provides a comprehensive 
survey of the experiment, showing Y(h) = ~fdhours  for the major variants and 
some of their subsets. In this and subsequent tables, an asterisk marks the 
standard subset used for the transformation comparisons previously shown in 
Tables 1 and 2. 

A detailed description of the various subsets can be found in Nelson et al. 
(1991, 2000), but a brief accounting is in order. Three REG device types have 
been used, with the majority of experiments on a diode-based "true" random 
source. Different locations, for Diode as well as the algorithmic pseudo (ATP) 
experiments, include proximate (A); next room (B); remote (C); and remote, 
off-time (D). Some early experiments combined parameters within series (X). 
Oldreg, Remreg, and Thoureg are distinguished by the size of series and the 
general purposes of the experimental program. The subset names in the co- 
operator experiment (Dunne, 1991) are largely self-explanatory; the bonded 
individual subset is produced by the people who belong to bonded pairs, here 
working alone. The Pseudo REG (PREG) experiments use a 30-stage shift- 
register based pseudo-random sequence with a variable shift frequency (Ramp) 
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TABLE 4 
Time-Based Effect Sizes, REG Experiment 

Subset Z-score Trials, N Hours Y(h) SE(h) 

All Diode 
First 10000" 
Local 
Remote 
Diode A 
Diode B 
Diode C 
Diode D 
Diode X 
Oldreg 103 
Oldreg 87 
Rernreg 
Thoureg 

Co-operator 
Same sex 
Opposite sex 
Bonded pairs 
Unbonded 

Bonded individuals 

PREG 
Ramp frequency 
Fixed frequency 

ATP 
Local 
Remote 
ATP B 
ATP C 
ATP D 

* Data subset used for the Results section calculations. 

or a fixed frequency (Fixed). Finally, the ATP subsets use an algorithm seeded 
by a combination of the time-of-day and microsecond timer readings. 

The majority of the subset yields clearly fall into the range for humad 
1 machine experiments shown in the last line of Table 1, with a few notable 

exceptions. The Diode X subset consists of the high scoring first series at the 
beginning of the research program (Dunne et al., 1994) and reflects the 
performance of only a few individuals. The opposite-sex co-operators, especially 
the bonded pairs, also appear to generate larger effects, with Z = 2.00 for the 
difference between effects for bonded pairs and the standard subset; this is not 
due to the particular operators involved, since the difference compared with their 
combined individual databases is also impressive, with Z = 1.79. Even if the time 
for both operators is considered, reducing the calculated yield by a factor of 42, 
the opposite-sex yields remain relatively large. In contrast, the same-sex co- 
operators have a small negative result, significantly different from the standard 
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TABLE 5 
Time-Based Yield: REG Diode, Sample Size, and Rate 

Size Rate SecITrial Z-score Trials, N Hours Y(h) SE(h) 

subset (2 = 2.00). Other exceptions are the small or negative yields for the 
ATP source and for an exploratory database in the fixed frequency version of 
the hardware Pseudo experiment, both of which differ significantly from the 
standard subset (2 = 2.46 and 2.09, respectively). It is instructive that the only 
major subset that shows an essentially null yield is the ATP database, which uses 
an algorithmic pseudorandom source. However, somewhat surprisingly, but of 
considerable theoretical interest, the remote subset of ATP shows a positive 
achievement comparable to the diode effect. 

Looking at a finer level of detail within the REG database, some potentially 
instructive variations occur in the amount of operator time invested relative to 
the number of bits and trials, during explorations of different sample sizes and 
sampling rates. Table 5 shows Y(h) in the full diode databases for sample sizes 
of 20, 200, and 2000 bits per trial at sampling rates of 100, 1000, and 10000 bits 
per second. 

Since some of the databases are quite small, and hence representative of only 
a few operators, the table also shows a set of results from one prolific operator, 
010, in which variations due to differences among individuals are excluded. 

This table indicates that Y(h) is of roughly similar magnitude in most of these 
subsets, with a trend toward larger yields for larger sample sizes. Similarly, there 
is a trend toward larger yields for faster rates, although few of the apparent 
differences approach significance. Figures 4 and 5 show these trends, using the 
full database calculations (except for the 100-bit sample size, which was 
explored only by operator 010). Neither the sample size nor the sampling rate 
trend is significant, although that for sample size has a 2-score of 1.60 for the 
slope coefficient, but both parameters suggest structure and indicate that a closer 
look, disentangling the size and rate interaction, should be informative. 

The RMC experiment, shown in Table 6, was originally designed to have 
20 sets of runs for a complete series. This was later shortened to 10 runs for 
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Effect Sizes as a Function of Sample Size 
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Fig. 4. Time-normalized REG yield, Y(h), as a function of sample size. 

operator comfort. Twenty-five operators produced 87 series, with significant 
overall results (Dunne et al., 1988). Subsequently, the nominal series was 
shortened still further to three sets, and a new exploratory database (RMC3) was 
started, with the goal of addressing certain questions inspired by the original 
experiment. In the latter, much smaller database, the overall effect is reversed 
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Fig. 5. Time-normalized REG yield, Y(h), as a function of sampling rate. 
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TABLE 6 
Time-Based Yield: RMC 

Subset Z-score Trials, N Hours 

556 
49 

45 2 
1 04 

All 10, 20 
First 10 sets* 
Local 
Remote 

All RMC3 
Local 
Remote 

All RMC 
Local 
Remote 

* Data subset used for the Results section calculations. 

and has roughly the same magnitude as the positive effect in the original 
experiment. Despite the small size of the RMC3 database, the difference is 
significant, with Z = 3.26, but an attempt to interpret the difference is beyond 
the scope of this paper. 

The PEND experiment, presented in Table 7, has significant internal structure, 
even though the overall HI - LO difference is not significant. The largest 
contributions to the structure arise from the difference between subsets with 
volitional vs. instructed assignment of intention (Nelson et al., 1994). Two 
versions of the experiment are presented in the table. The upper portion of Table 
7 shows the full database as of February 1993, at which time the decision was 
made to close the ongoing series of replications and analyze the concatenation. 

TABLE 7 
Time-Based Yield: PEND 

Subset Z-score Trials, N Hours Y(h) SE(h) 

All PEND 
First 25 runs* 
Prolific only 

Local 
Volitional 
Instructed 

Remote 

SSE PEND 
Local 

Volitional 
Instructed 

Remote 

* Data subset used for the Results section calculations. 
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TABLE 8 
Time-Based Yield: PRP, 15 Minutes per Trial 

Subset Z-score Trials,N Hours Y(h) SE(h) 

All formal 6.355 336 168 .693 .lo9 
Instructed, ah initio* 3.122 94 47 .644 .206 
Volitional 3.549 21 1 106 .489 ,137 
Instructed 5.771 125 63 1.032 .I78 
Ex post fizcto 5.792 59 30 1.508 .260 
Ab initio 4.578 277 139 .550 .120 

* Data subset used for the Results section calculations. 

The second part shows the database as of June 1992, which was described in 
a presentation to the annual meeting of the Society for Scientific Exploration 
(SSE) (Nelson & Bradish, 1992). The bulk of the subsequent data are from one 
operator with a very large remote database (600 trials, more than half the new 
data) in which there is a marginally significant negative yield. The SSE data- 
base therefore may give a more representative indication of the effects in this 
experiment. The remote yield in the SSE subset is considerably larger than that 
in the local data, a difference that persists in the full database (although it is 
reduced by the hyper-prolific operator's contributions.) 

The PRP experiment has a number of instructive subset divisions, among 
which a particularly interesting one is the distinction between trials done in the 
volitional mode, where agents freely select targets in their location at the time 
specified for the trial and instructed trials are drawn randomly from a large 
prepared pool. A criticism of the PRP experiments (Hansen et al., 1992) sug- 
gested that the volitional trials were vulnerable to "shared biases". A detailed 
response (Dobyns et al., 1992) showed this concern to be unwarranted, and as 
may be seen in Table 8, the allegedly flawed volitional trials have a considerably 
smaller yield than those in the apparently safer instructed protocol. 

The table also provides a comparison of trials directly encoded in the binary 
descriptor list (ah initio) vs. those encoded from transcripts (post facto). If both 
the agent and percipient times are considered to be instrumental in this 
experiment, the yield and the standard error are both reduced by a factor of 42, 
but even in this case the overall yield remains a factor of two larger than is 
typical in the humadmachine interaction experiments. 

Finally, results from two relatively small humadmachine experiments are 
shown in Table 9. These were both terminated as active experiments, even 
though they showed promise, before large databases could be obtained. The 
Fabry-Perot Interferometer (FPI) experiment proved to require too great 
a proportion of laboratory resources in order to provide adequate control of 
the environmental influences on the extremely sensitive instrument (Nelson 
et al., 1982). The microelectronic CHIP experiment could not be continued 
because the adequately controlled "trials" protocol was too demanding and 
uncomfortable for operators. 
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TABLE 9 
Time-Based Yield: CHIP, FPI 

Subset 2-score Trials, N Hours Y(h) SE(h) 

CHIP, trials* .554 760 11 .I70 .306 
CHIP, runs 7.331 650 10 2.318 .316 
FPI, operator 2.258 60 10 .714 .316 
FPI, operator and experimenter 2.258 60 20 .505 .224 

* Data subset used for the Results section calculations. 

The "trials" subset of the CHIP database, although quite small, was generated in 
a fully competent and reliable experiment, and could therefore be included in the 
comparisons described in the Results section. The "runs" protocol was potentially 
vulnerable to large error rate fluctuations due to regime changes traceable to 
temporal variations in the microscopic behavior of electronic components, and the 
very large yield is suggestive of an artifactual inflation. The timing of the runs and 
of the error rate changes was of the same order, so a "success" could be attributed 
to fortuitous, coincidental timing, so we opted for the conservative view that the 
data could not be accepted as representative. This is an exemplary case showing 
how the comparison of Y(h) with values typically found in related experiments 
may help identify extreme outliers and lead to detection of design vulnerabilities. 

The FPI experiment (Table 9) used a bipolar protocol, making it potentially 
more vulnerable to artifacts than our standard tripolar experiments. Its yield 
appears to be larger than that of the other humadmachine experiments, but the 
error estimate is commensurately large and the difference does not approach 
significance. The smaller yield shown in the last line of Table 9 reflects the 
requirement in the FPI experiment for an experimenter to be present and to know 
the intention for the trial and thus be a potential contributor, in the sense that he 
or she may also have an intention and at least unconsciously participate in the 
anomalous interaction. 

Inter-Laboratory Explorations 

As specific examples of the potential utility of the time-normalized yield 
measure for exploration of the broad range of questions that might be asked in 
anomalies research, three calculations were made for non-PEAR research with 
commonalities and differences that are instructive. In all three cases, there is an 
expectation of a relatively large effect size or yield, based on the protocol. 

Helmut Schmidt has a large body of REG-type experiments, addressing 
a number of issues common to the PEAR experiments but using different 
approaches in some respects, most notably by pre-selecting subjects based on 
pilot tests. The question can be asked whether selected subjects actually produce 
larger yields, and if so, an estimate of their relative efficiency can be made (e.g., 
by comparing Schmidt's time-normalized yield with the PEAR results). One of 
the best protected of his experiments was done in collaboration with Morris and 
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TABLE 10 
Time-Based Yield: Schmidt, Braud, Honorton 

Experimenter Subjects Rate (minltrial) Z-score Trials, N Hours Y(h) SE(h) 

Schmidt* 
Schmidt 
Schmidt 

Braud* 
Braud 
Honorton* 
Honorton 
Honorton 
Honorton 

Subject 
Subject, experimenter 
Subject, experimenter, 

observer 
Participant 
Participant, helper 
Sender 
Receiver 
Julliard student 
Selected subject 

* Data used in Figure 6. 

Rudolph (Schmidt et al., 1986) and nicely excludes vulnerabilities to potential 
spurious effects and various criticisms through its multi-experimenter design and 
implementation. This experiment uses seed numbers based on pre-recorded 
radioactive decay for an algorithmic pseudorandom sequence that determines 
the behavior of visual or auditory feedback. 

It can be argued that there are more participants in Schmidt's experiment than 
the person regarded as the subject. Indeed, though this is usually ignored in 
experimental design, several others may be wishing for a non-random outcome. 
The experimenter uses a true random event source to generate a set of seed 
numbers, hoping, one may presume, they will turn out to be interesting. The 
second observer generates a true random sequence of target assignments, 
probably with a similar state of mind. Finally, the subject spends on the order of 
1 minute per trial, attempting to influence the outcome of the experiment. The 
upper part of Table 10 shows Schmidt's yields calculated as if there were one, 
two, or three participants contributing to the anomalous result, using a time per 
trial in the middle of the range indicated in the published report. All of these are 
indeed larger than Y(h) for the standard PEAR REG database, but quite similar 
to those for some of the smaller subsets and for selected operators. 

The second example is an exploration of a potentially more labile anomalous 
interaction in an experiment that assesses direct mental influence of one person 
on the activity of another (Braud et al., 1995). It asks whether a participant's 
ability to focus attention upon an object can be facilitated by a distant, isolated 
"helper". Significant differences were found in the number of self-reported 
distraction episodes in randomly interspersed control and helping periods. Each 
session contained eight 1-minute segments for each of the conditions, and the 
total time for both was used for the yield calculation, shown in the second part of 
Table 10. The resulting Y(h) is somewhat more than twice as large as the 
standard REG yield, and the difference is highly significant (Z = 4.1). 

For the third example, claims of larger effect sizes depending on special 
conditions may be tentatively evaluated by cross-experiment comparisons of 
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yield, in the absence of direct intra-experiment evidence. The Ganzfeld 
experimental program designed by Honorton (Bem & Honorton, 1994) has 
common elements with our PRP experiments, but again, it has some important 
differences. In particular, the Ganzfeld situation of reduced sensory input is held 
to be more conducive for anomalous information acquisition than simpler free- 
response protocols, although this expectation is based largely on theoretical 
considerations rather than on specific comparisons. The strongest set of these 
experiments is a database generated in a design meeting stringent criteria 
discussed in the Honorton-Hyman debates and description of ideal protocols 
(Hyman & Honorton, 1986). It is referred to as autoganzfeld and incorporates 
excellent controls (Honorton et al., 1990). 

In this experiment also there are alternative ways to define the time invested. 
As in the PRP experiments, there are two participants, and the time spent by both 
might be included, but for this analysis only one person's time is counted. (As 
before, the two-person yields would be a factor of 42 smaller.) The receiver is in 
the Ganzfeld situation for 30 minutes, and the sender sees six 1-minute 
presentations of the target over the course of the half hour. Calculations for 
both times are shown in the third part of Table 10. Also included are two data 
subsets from special or selected subject populations to indicate the range of 
yields in this experiment. One group (Julliard students) represents an artistic 
population; the other was selected on the basis of prior performance. 

The Schmidt example provides moderate evidence that in structurally similar 
experiments, selected subjects can generate larger yields by a factor of at least 
two. All three of the Schmidt yield estimates are larger than that for the standard 
PEAR REG, and although the error estimates are commensurately large, the 
difference is highly significant (2 = 6.7). In the Braud experiment, which is part 
of a program studying anomalous interactions with living systems, there is again 
a significantly higher yield compared with the REG experiment by a factor of 
about two. We should note that participants in the Braud experiment were 
friends and acquaintances of the helpers, and that some of the REG co-operator 
subsets have equal or larger yields, suggesting an alternative interpretation based 
on multiple-subject cooperation. The overall Ganzfeld yields are very much in 
line with PEAR'S standard PRP results, and the largest, based on the 6 minutes1 
trial rate, is almost identical (.653 for Ganzfeld and .644 for PRP). Both 
experiments also show a similar range of yield variations across subsets. This 
constitutes suggestive evidence that the Ganzfeld procedure does not, as is 
widely believed, enhance anomalous information transfer over an unconstrained 
free-response approach; at least it indicates the question is open, and it deserves 
direct scrutiny in appropriately designed research. 

Discussion 

A fundamental objective in all these experiments is to acquire data that address 
the anomalous interactions of consciousness with its environment. Considering 
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the experiments from the point of view of the participants, one commonality is 
clear: there is a period of time during which the person is engaged in the 
experimental task, with intentions to produce anomalous results. Since the 
anomalies are correlated with these intentions, whether in the REG, RMC, 
PEND, CHIP, or PRP experiments, a natural unit for comparable yield 
calculations is arguably the length of time spent by the operator or percipient 
doing the experiment. This analysis shows that time normalization does give 
sensible results, specifically, a high degree of consistency among calculated 
yields for a variety of humadmachine experiments. In contrast, the binary and 
information measures and the trial unit all indicate yields ranging over orders 
of magnitude, which does not seem sensible for experiments that all attempt to 
establish and measure essentially the same phenomenon. Our teleological unit, 
the series, approaches the consistency of the time-based measure, but detailed 
examination shows it is correlated with the size or length of the series. Moreover, 
it is impractical because it is arbitrarily defined and not generally applicable. 

Figure 6 graphically displays the uniformity of the time measure Y(h) across 
a broad spectrum of independent subsets of the humadmachine and information 
transfer experiments, as well as the stark exceptions to the rule. It includes local 
and remote variants of the REG, ATP, RMC, and PEND experiments; the 
PseudoREG, RMC3, and CHIP databases; the PRP database; and the three 
examples drawn from non-PEAR research: Schmidt (HS), Honorton (CH), and 
Braud (WB). A X2 test across the 12 local and remote databases from PEAR'S 
humadmachine experiments yields 5.78 on 11 degrees of freedom, indicating 
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strong homogeneity. The distribution of yield measures becomes heterogeneous 
if the PRP database is added ( X 2  = 28. 5 on 12 df, p = 0.0046). Adding the 
non-PEAR databases singly does not produce significant heterogeneity, but the 
combined effect of these and the PRP database produces a highly significant 
X2 of 44.6 on 15 df. 

A few examples of applications for the time-normalization approach to cross- 
experiment comparisons suggest the power and flexibility of this perspective. 

1. One of the motivating questions for the development of the PEND 
experiment was whether an analog device might be more accessible or 
vulnerable to anomalous interactions than digital experiments. The answer 
suggested in this analysis is that there is no such advantage. 

2. The experiment on influencing error rates in CHIP in its best-controlled 
form could not be pursued beyond a pilot database for technical reasons, 
and it did not establish a persuasive level of significance. These compar- 
isons show, however, that it did have a yield comparable to the other 
humanlmachine experiments, suggesting that the behavior of a fundamen- 
tal electronic device such as a CHIP may be vulnerable to an influence of 
consciousness. Results generated in the less completely controlled proto- 
col were shown by this analysis to be outliers, demonstrating the need for 
experimental refinement. 

3. Application of this strategy on an operator-specific basis to the 
comparison of yields across several experiments provides another test of 
the viability of time normalization. It also may produce useful insights 
into the relative vulnerability of different physical systems: does the 
particular device matter, or are operators' effects independent of the de- 
vice? Preliminary work shows that there is indeed consistency of the time- 
normalized yield across multiple experiments for individual operators. A 
Bayesian analysis by my colleague, York Dobyns, based on all data from 
operators who have generated databases in two or more PEAR experi- 
ments indicates a Bayes factor of 11. This is roughly equivalent to 30-to- 1 
odds in favor of the hypothesis of intra-operator consistency across 
experiments. 

4. Remembering that other moderators may need to be considered, the two or 
three times larger yield in the PRP experiment suggests that it is more 
efficient, implying greater statistical power to detect anomalous inter- 
actions. It may be possible to determine whether this is a function of the 
protocol or the involvement of two participants by direct comparison of the 
PRP experiment with otherwise similar PRP experiments involving only 
a single participant. Indeed, it should be instructive to compare yields in 
various one- and two-person anomalies experiments, for example, within 
the PEAR database of multiple operator experiments, and by examining the 
telepathy vs. clairvoyance literature in parapsychology. As noted earlier, 
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REG yield, suggesting that PRP (information transfer) effects may be 
inherently larger as a function of the particular task. 
With the caveat that a broader survey is required, the exploratory 
applications to other researchers' works promise useful, quantitative 
results. Comparisons of Y(h) from the selected populations of subjects in 
Helmut Schmidt's REG random number experiments against PEAR'S 
unselected subject populations suggests a considerably larger yield for 
the former, and an implied commensurate research efficiency. Anomalous 
interaction with physiological systems in Braud's research (which 
involves two people as well) also appears to promise a substantial 
increase in yield. Finally, yields in the PRP work at PEAR and the 
Ganzfeld protocols of Honorton appear not to differ, despite widespread 
belief in the efficacy of the Ganzfeld, but both show a factor of two or 
three larger yield than is typical for humadmachine experiments. 

These examples from intra- and inter-laboratory comparisons are interesting 
in their own right, and they provide tentative answers to questions of 
considerable importance for anomalies research. In addition, the results seem 
reasonable, and as such constitute a substantial inductive argument for the 
viability of Y(h) as a time-based natural scale for anomalous effects. 

Acknowledgments 

The PEAR program is supported by grants from the John E. Fetzer Insti- 
tute, the McDonnell Foundation, the Ohrstrom Foundation, Mr. Laurance 
S. Rockefeller, and Donald Webster, along with other philanthropic agencies 
and individuals. Special thanks are extended to my colleagues, Robert Jahn, 
York Dobyns, and Brenda Dunne, for valuable discussions. 

References 

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, 
NJ: Erlbaum. 

Bem, D. J., & Honorton, C. (1994). Does psi exist? Replicable evidence for an anomalous process 
of information transfer. Psychological Bulletin, 115, 4-18. 

Braud, W., Shafer, D., McNeill, K., & Guerra, V. (1995). Attention focusing facilitated through 
remote mental interaction. Journal of the American Society for Psychical Research, 89, 103-1 15. 

Dobyns, Y. H., Dunne, B. J., Jahn, R. G., & Nelson, R. D. (1992). Response to Hansen, Utts, and 
Markwick: Statistical and methodological problems of the PEAR Remote Viewing (sic) 
experiments. Journal of Parapsychology, 56, 1 15-146. 

Dunne, B. J. (1991). Co-operator experiments with an REG device. Technical Note PEAR 91005, 
Princeton Engineering Anomalies Research, Princeton University, School of Engineering1 
Applied Science. 

Dunne, B. J., Dobyns, Y. H., & Intner, S. M. (1989). Precognitive Remote Perception 111: Com- 
plete binary data base with analytical refinements. Technical Note PEAR 89002, Princeton 
Engineering Anomalies Research, Princeton University, School of EngineeringIApplied 
Science. 



Time-Normalized Yield 

Dunne, B. J., Dobyns, Y. H., Jahn, R. G., & Nelson, R. D. (1994). Series position effects in random 
event generator experiments, with appendix by Angela Thompson. Journal of Scientific 
Exploration, 8, 197-215. 

Dunne, B. J., Jahn, R. G., & Nelson, R. D. (1983). Precognitive Remote Perception. Technical 
Note PEAR 83003, Princeton Engineering Anomalies Research, Princeton University, School 
of EngineeringJApplied Science. 

Dunne, B. J., Nelson, R. D., & Jahn, R. G. (1988). Operator-related anomalies in a Random 
Mechanical Cascade. Journal of Scientific Exploration, 2 ,  155-179. 

Glass, G. V. (1977). Integrating findings: The meta-analysis of research. Review of Research in 
Education, 5 ,  35 1-379. 

Hansen, G., Markwick, H., & Utts, J. (1992). Critique of the PEAR Remote Viewing experiments. 
Journal of Parapsychology, 56, 97-1 14. 

Honorton, C., Berger, R. E., Varvoglis, M. P., Quant, M., Derr, P., Schechter, E. I., & Ferrari, D. C. 
(1990). Psi communication in the ganzfeld: Experiments with an automated testing system and 
a comparison with a meta-analysis of earlier studies. Journal of Parapsychology, 54, 99-139. 

Hyman, R., & Honorton, C. (1986). A Joint communique: The psi ganzfeld controversy. Journal 
of Parapsychology, 49, 3-49. 

Jahn, R. G., Dunne, B. J., & Nelson, R. D. (1987). Engineering anomalies research. Journal of 
Scientific Exploration, 1 ,  21-50. 

Nelson, R. D., & Bradish, G. J. (1992). A Linear Pendulum experiment: Operator effects on damping 
rate. Internal Document PEAR 92003, Princeton Engineering Anomalies Research, Princeton 
University, School of EngineeringJApplied Science. 

Nelson, R. D., Bradish, G. J., Jahn, R. G., & Dunne, B. J. (1994). A linear pendulum experiment: 
Operator effects on damping rate. Journal of Scientific Exploration, 8, 471-489 (also available 
as Technical Note PEAR 93003). 

Nelson, R. D., Dobyns, Y. H., Dunne, B. J., & Jahn, R. G. (1991). Analysis of variance of REG 
experiments: Operator intention, secondary parameters, database structure. Technical Note 
PEAR 91004, Princeton Engineering Anomalies Research, Princeton University, School of 
EngineeringJApplied Science. 

Nelson, R. D., Dunne, B. J., & Jahn, R. G. (1982). Psychokinesis studies with a Fabry-Perot 
interferometer. In Winer, D., and Nelson, R. (Eds.), Research in Parapsychology, 1981. 
Metuchen, NJ: Scarecrow Press. 

Nelson, R. D., Dunne, B. J., & Jahn, R. G. (1984). An REG experiment with large database capability, 
III: Operator related anomalies. Technical Note PEAR 84003, Princeton Engineering Anomalies 
Research, Princeton University, School of EngineeringJApplied Science. 

Nelson, R. D., Jahn, R. G., Dobyns, Y. H., & Dunne, B. J. (2000). Contributions to variance in 
REG experiments: ANOVA models and specialized subsidiary analyses. Journal of Scientific 
Exploration, 14, 473-489. 

Nelson, R. D., Ziemelis, U. O., & Cook, I. A. (1992). A Microelectronic Chip experiment: Effects of 
operator intention on error rates. Technical Note PEAR 92003, Princeton Engineering Anomalies 
Research, Princeton University, School of EngineeringJApplied Science. 

Rosenfeld, A. H. (1975). The Particle Data Group: Growth and operations. Annual Review of Nuclear 
Science, 25, 555-599. 

Rosenthal, R. (1991). Meta-analytic Procedures for Social Research (revised ed.). Newbury Park, 
CA: Sage. 

Schmidt, H. (1970). The psi quotient (PQ): An efficiency measure for psi tests. Journal of 
Parapsychology, 34, 21G214. 

Schmidt, H., Morris, R., & Rudolph, L. (1986). Channeling evidence for a PK effect to independent 
observers. Journal of Parapsychology, 50, 1-15. 

Targ, R. (2000). Remote viewing in a group setting. Journal of Scientific Exploration, 14, 107-114. 
Tart, C. (1983). Information acquisition rates in forced-choice ESP experiments: Precognition does 

not work as well as present-time ESP. Journal of the American Society for Psychical Research, 
77, 293-310. 

Timm, U. (1973). The measurement of psi. Journal of the American Society for Psychical Research, 
67, 282-294. 

Utts, J. (1991). Replication and meta-analysis in parapsychology. Statistical Science, 6 ,  363-403. 


